VECTOR SEARCH: THE HARD WAY


http://softwaredoug.com

Obligatory Bio Slide

Hi I’m Doug
(@softwaredoug everywhere)

Long-time search enthusiast... Not
yet (never?) an expert

I wrote some search books, did some open
source

I work at Reddit

(Elasticsearch Learning to Rank E

I worked at Shopify & OpenSource Connections
in search

I blog here: http://softwaredoug.com itme
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THE PROBLEM




My Strawman(?)
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Real Life systems...
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Real life constraints

Current Vector DB systems

e High recall
e Low latency



Real life constraints

Current Vector DB systems

e High recall
e Low latency “Benchmark” regime
Real Life

e Updates need to happen constantly
o Index not built up-front
e RAM can’t be absorbed by millions of :} IRL
floating point values
e We need to shard, merge indices etc



START AT THE END




What results from just these incentives?
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... you precompute the right answer
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... you create a ‘hub’ for that area
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... you create a way to get there fast
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... you create a way to get there fast

Skiplist t>> You have
Hierarchical

Navigable
Skiplist > Skiplist > small
Worlds
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“Graph” regime of today

Current Vector DB systems

Skiplist > E High recall ] “Benchmark?”

Low latency regime
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“Zip code” metaphor

Current Vector DB systems
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“Graph” regime

Skiplist >
> [ skiplist >

Vector: x=0.10,y=0.12,z=0.59
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Current Vector DB systems

Ed Highlrecall :} “Benchmark?”
4 Low latency regime

Real Life
e X Easy to update
e X Memory
e X Persist / load from disk
e X Shard, merge indices etc



“Graph” regime
Current Vector DB systems

Skiplist t>> 4 High recall :} “Benchmark?”

L4 Low latency regime
j> Skiplist >

Vector: x=0.10,y=0.12,z=0.59

Real Life
e X Easy to update
e X Memory
o & Persist / load from disk
e X Shard, merge indices etc

SCANN and friends actually help




Are we really solving this first principles?

Current Vector DB systems

L4 High recall :} “Benchmark?”
4 Low latency HNSW / graph

regime

We are here
(local maximum)

Real Life
e X Easy to update
e X Memory
/ \ o X Disk
e X Shard, merge 1indices etc



Lipstick on a pig?

Other requirements

X Recover cosine similarity
XK Integration with traditional
search

X Beyond just “recall” over top N
?

Current Vector DB systems

LJ High recall :} “Benchmark?”
4 Low latency HNSW / graph

regime

Real Life

X Easy to update
X Memory

X Disk

X Shard, merge indices etc



HASHING




I’m just a caveman

, ) s
- > N

)
A g




Dumb hashes

Dot prod > 0
Random hyperplane

Dot Prod <= 0

projection =
np.random.normal(size=dims)
projection =

np.linalg.norm(projection)



Times many many more

Caveman Lawyer Nearest Neighbors

Insert:

bit_mask = «”»
for proj 1in projections:
dotted = np.dot(proj, new_vector)

if dotted > 0O:
bit_mask += “1”
else:
Dumb list bit_mask += “0”

\

hashed_vectors.append(bit_mask)



Caveman Lawyer Nearest Neighbors

Query Hashed : 11001111
Index Vector Hashed: 11000100

Same side of projection 5 / 8 times
Hamming similarity 0.625



Times many many more

Caveman Lawyer Nearest Neighbors

uer

query_bit_mask = /*same as last slidex/
for hashed in projections:

# Saves some operations by just counting
OPPOSITE, lower here 1is more similar

xord = hashed " query_bitmask

num_bits_set = popcount(xord)

if num_bits_set < min_so_far:
. append to top N..
min_so_far = num_bits_set



Results
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From: https://softwaredoug.com/blog/2023/08/21/implementing-random-projections
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Results
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Highly Parametric
Pre-compute the teeniest structures
(ie graphs)

Highly Nonparametric
Assume nothing about vector space

.4 High recall
4 Low latency

X Easy to update
(append!)

X RAM

X Disk

X Dumb as & to
merge / shard

X High recall
X Low latency

\4 Easy to update
(append!)

? Very little RAM
L4 Dumb as & to
merge / shard



Highly Parametric Highly Nonparametric
Pre-compute the teeniest structures Assume nothing about vector space
(ie graphs)

X High recall

4 High 11
NG |oen reca X Low latency

.4 Low latency

X Easy to update L4 Easy to update
(append!) (append!?
X RAM ? Very little RAM
X Disk 4 Dumb as & to
X Dumb as & to merge / shard
merge / shard
Global structure to maintain, Little global structure to maintain,

update, merge.. update, merge..



PARTITIONING




Most try to mitigate HNSW / graphs

Highly Parametric

Pre-compute the teeniest structures

(ie graphs)

Highly Nonparametric
Assume nothing about vector space

.4 High recall
4 Low latency

X Easy to update
(append!)

? Very little RAM
X Dumb as & to
merge / shard

=

Make them easier to update, etc



What about the other way?

Highly Nonparametric
Assume nothing about vector space

X High recall
X Low latency

<: \4 Easy to update

(append!)
Improve speed & recall ? Very little RAM
but preserve L4 Dumb as & to
operational dumb merge / shard

caveman concerns

Little global structure to maintain,
update, merge..



Why can’t we just...

A
C

Like assign “subcubes” or
somesuch that A and B share?
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Img from
https://stackoverflow.com/questions/69172349/r-project-plot-a-3d-mesh-grid-using-plot3d-package
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KD Trees
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KD Trees break down...

Too many dimensions to “split”

There’s a lower kind-of intrinsic
dimensionality we can capture

e Re-orient to vector space



Random Projection Trees




Radial Projection on unit sphere

r.v <= s

s = 0 -> 90 degrees from r



AS a tree...




Nested — left hand side shown

r.v <= S/




Represent tree path as binary hash

prince: 00110
queen: 01110

King: 01110

throne: 01000
kingdom: 00110
lord: 00110

royal: 01110

reign: 01000
Fernvale: 00100
IBG: 01010
ReachedSorry: 10100
MapsUV: 11110
ScoresAndOdds.com: 10010
BRSC: 11000
Lifestreams: 01010
IMMOLATION1: 10100
Purga: 01100
Miniaturezed: 01000




First split... Pretty good!

king: 00100
kings: 01110
prince: 09110
queen: 01110
King: 01110
throne: 01000
kingdom: 09110
lord: 00110
royal: 01110
reign: 01000

- all same side

python benchmark/glove.py --algorithm rp_tree --workers 1 --verbose --seed 0



First split... Pretty good!

king: ©0.L00
kings: 01.10
prince: G0.10
queen: 01110
King: ©1.10
throne: 01000
kingdom: ©0.10
lord: GOL110
royal: €1.10
reign: 61000

=)~ some neighbors sliced
off...

python benchmark/glove.py --algorithm rp_tree --workers 1 --verbose --seed 0



First split... Pretty good!

king: ©0.L00
kings: 01.10
prince: G0.10
queen: 01110
King: ©1.10
throne: 01000
kingdom: ©0.10
lord: GOL110
royal: €1.10
reign: 61000

=)~ some neighbors sliced
off...

python benchmark/glove.py --algorithm rp_tree --workers 1 --verbose --seed 0



OK, we expect this

python benchmark/glove.py --algorithm

rp_tree --workers 1 --verbose --seed 0



... But how often?

300D Glove embeddings,

vectors = np.load("test/glove_sample.npy'
vector_idx = 774 # didx being searched 774 king

for seed in range(0, 400):

np.random.seed(seed)
splitter = rptree_proj_maxvar_chooserule(vectors)

left, right = splitter.split(vectors)
assert len(left) != 0
assert len(right) != 0

if nn_on_correct_side(vectors, vector_idx, left, right):

pass_count += 1
print(".4")

else:
failed_seeds.add(seed)

print("X™)
runs += 1

Source code:
https://github.com/softwaredoug/np-sims/blob/7e9b95580f36bbc4c57545e66c27d5802041949¢e/test/test_partition.py#L128

/ “king”, its neighbors, and 1000 random points
)

Neighbors stay together:

Random Point: ~60% of time
Outlier (king): ~80% of the time

Maybe slight improvements:
Choosing projection with
most variance?



Curse of Dimensionality

So far, so good!

300 Dimensional Sphere



Curse of Dimensionality

Prince

But wait... WTF (¢

300 Dimensional Sphere



Curse of Dimensionality

Prince )
o King

e But wait... WTF G

o) cheese

© computer
queen

300 Dimensional Sphere



Like how does this happen
s A

i -

JONTUNDERSTAND




Curse of Dimensionality

Prince .
o King

e But wait... WTF G

o) cheese

© computer

3D queen

representations
often trick us

This is just 1 of 300
dimensions



Shared dot product tells us so Little

0 . 298 299
king r.king ? ?
queen r.queen ? ?

299 ways it can be different!

https://softwaredouqg.com/blog/2023/03/02/shared-dot-product
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More Concretely

lat long altitude
You 41.87 87.63 100 m
Bob 41.87 87.62 95 m

Neighbors, right?

https://softwaredouqg.com/blog/2023/03/02/shared-dot-product
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More Concretely

https://softwaredouqg.com/blog/2023/03/02/shared-dot-product

lat long altitude age Blrthpl ace
You 41.87 87.63 100 m 5 Chicago
Bob 41.87 87.62 95 m 95 Ukraine

Actually dramatically different
just with these 2 dimensions


https://softwaredoug.com/blog/2023/03/02/shared-dot-product

Split efficiency

Can improve split efficiency by
choosing PCAs

Splits up |
many Splits up fewer neighbors
neighbors



Many projections -> forest




We can create an RP forest
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K-nearest Neighbor Search by Random Projection Forests - hitps:/arxiv.org/pdf/1812.11689.pdf
Yan, Wang, Wang, Wang, Li



https://arxiv.org/pdf/1812.11689.pdf
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HNSW (Faiss)
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Build times
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Trade-offs!

Highly Parametric
Pre-compute the teeniest structures
(ie graphs)

e (2 - Fixes curse of
dimensionality...

= ...by precomputing answer
and being harder to update

Highly Nonparametric
Assume nothing about vector space

e & - Prone to increasing curse
of dimensionality problems as
dims 1increase..

*2 .. but dumb caveman lawyer
like me can maintain



More dimensions... more problems...

Highly Parametric Highly Nonparametric

Pre-compute the teeniest structures Assume nothing about vector space
(ie graphs)

High recall

# High recall
Low latency

# Low latency

X Easy to update L4 Easy to update
! (append!)
éngiud') ? Very Llittle RAM
¥ Disk L4 Dumb as & to

X Dumb as & to merge / shard

merge / shard



Choose right tool for job

Highly Parametric

Pre-compute the teeniest structures
(ie graphs)

Highly Nonparametric
Assume nothing about vector space

Fine-grain retrieval Coar§e—grain
retrieval

(ie top 10) to .

directly show user (ie top 1000) to
rerank



Choose right HNSW params

Highly Parametric Highly Nonparametric
Pre-compute the teeniest structures Assume nothing about vector space
(ie graphs)

Fine-grain retrieval Coarse-grain retrieval
Tune for performance
(fewer connections,
gather few candidates)

Tuned to high-recall
(more connections,
gather more
candidates)

https://www.elastic.co/guide/en/elasticsearch/reference/current/tune-knn-search.html



https://www.elastic.co/guide/en/elasticsearch/reference/current/tune-knn-search.html

Which use-case?

Highly Parametric / Fine Grain
Pre-compute the teeniest structures
(ie graphs)

Highly Nonparametric / Coarse Grain
Assume nothing about vector space

Fine-grain retrieval
(ie top 10) to
directly show user

Inspired by your browsing history

What's the best gift to get a four year old?

3

Choosing a gift for a 4-year-old can be a delight

< curious, energetic, and eager to explore the wor
) on the child's interests, but here are some categ
Amazon Essentials Men's Amazon Essentials Men's 1. Creative Arts and Crafts supp"es
Crewneck Fleece Slim-Fit Long-Sleeve
Sweatshirt Pocket T-Shirt * Nuausine and Palavisea Cata: Deavida tham writh
WRWWIT 243 WRRWWIT 49
$15.00 $10.00
RAG?

Recos?

Coarse-grain
retrieval (ie top
1000) to rerank w/
other factors?

% ﬁ cats are fun

Images Videos To play Shopping Why do

About 419,000,000 results (0.37 seconds)

@ Good Housekeeping
https://www.goodhousekeeping.com Life » Pets

20 Reasons Why Cats Make the Best Pets - f
Jan 31,2020 — Not only are they adorable (because seriously, t
fiercely independent, curious, and loyal — and can make amazir
Cats Can Help Kids Learn... - They Have Playful Moods - They C

People also ask :

Search?



Conclusion - who is right?
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Leibniz

Relational space: space only

has meaning in 1its relation to
other objects

(ie graphs, HNSW, etc)

Newton

Absolute space: the “x,y,z”
coordinates we’re used to

(ie space partitioning)



Other thought provoking talks

(Not nesc. related to vectors)

TDD Where Did It ALl Go Wrong (Ian Cooper)
https://www.youtube.com/watch?v=EZ05e7EMOLM

(what TDD actually means, and how we’re doing it
wrong)

Learning Learning to Rank (Sophie Watson)

https://www.youtube.com/watch?v=7teudGhdngo
(Just a nice overview of LTR from ML Point of View)

The Only Unbreakable Law (Casey Muratori)
https://www.youtube.com/watch?v=5TIUj1EZwpJY

(What Conway’s Law actually says - how Conway’s law
transcends time & space on software projects)



https://www.youtube.com/watch?v=EZ05e7EMOLM
https://www.youtube.com/watch?v=7teudGhdnqo
https://www.youtube.com/watch?v=5IUj1EZwpJY

