
© Doug Turnbull (http://softwaredoug.com), all opinions my own, not my employer

Vector Search: The Hard way

A series of educational mistakes

Chicago Search Meetup
Sept, 2023

http://softwaredoug.com


Obligatory Bio Slide
 Hi I’m Doug
(@softwaredoug everywhere)

Long-time search enthusiast... Not 
yet (never?) an expert

I wrote some search books, did some open 
source

I work at Reddit

I worked at Shopify & OpenSource Connections 
in search

I blog here: http://softwaredoug.com :itme:

http://softwaredoug.com


The Problem



My Strawman(?)

https://ann-benchmarks.com/ 

Build 
Time

Search 
Time

(Searching static index)

https://ann-benchmarks.com/


Real Life systems…

Vector DB



Updates are constant

Vector DB
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Searches are constant
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Limited memory

Vector DB

Constant 
updates

Searches

(Only so much RAM)



Sharded
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Sharded

Vector DB
Shard 1

Constant 
updates

Searches

(Only so much RAM)

Vector DB
Shard 2

Merge 
results
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Real life constraints

● High recall
● Low latency

Current Vector DB systems



Real life constraints

● High recall
● Low latency

Current Vector DB systems

● Updates need to happen constantly
○ Index not built up-front

● RAM can’t be absorbed by millions of 
floating point values

● We need to shard, merge indices etc

Real Life

“Benchmark” regime

IRL



Start at the end



What results from just these incentives?

https://ann-benchmarks.com/ 

Build 
Time

Search 
Time

(Searching static index)

https://ann-benchmarks.com/


… you precompute the right answer

Me

Tom SueEd



… you create a ‘hub’ for that area
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… you create a way to get there fast
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Vector: x=0.10,y=0.12,z=0.59
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Skiplist Skiplist

Skiplist You have 
Hierarchical
Navigable
Small
Worlds



“Graph” regime of today
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“Zip code” metaphor
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● ❌ Shard, merge indices etc

Real Life



“Graph” regime

Me

Tom SueEd

HUB
dist=

0.01

Vector: x=0.10,y=0.12,z=0.59

0.
03

0.03

0.
02

0.04

0.005

0.09

Skiplist Skiplist

Skiplist ✅ High recall
✅ Low latency

Current Vector DB systems

“Benchmark”
 regime

● ❌ Easy to update
● ❌ Memory
● 🤔 Persist / load from disk
● ❌ Shard, merge indices etc

Real Life

SCANN and friends actually help



Are we really solving this first principles?

✅ High recall
✅ Low latency

Current Vector DB systems

“Benchmark”
HNSW / graph
 regime

● ❌ Easy to update
● ❌ Memory
● ❌ Disk
● ❌ Shard, merge indices etc

Real Life

We are here
(local maximum)



Lipstick on a pig?

✅ High recall
✅ Low latency

Current Vector DB systems

“Benchmark”
HNSW / graph
 regime

● ❌ Easy to update
● ❌ Memory
● ❌ Disk
● ❌ Shard, merge indices etc

Real Life
● ❌Recover cosine similarity
● ❌Integration with traditional 

search 
● ❌Beyond just “recall” over top N
● ...?

Other requirements



Hashing



I’m just a caveman



Dumb hashes
Random hyperplane

Dot prod > 0

Dot Prod <= 0

projection = 
np.random.normal(size=dims)
projection = 
np.linalg.norm(projection)



Times many many more

   bit_mask = “”
   for proj in projections:
       dotted = np.dot(proj, new_vector)
       
       if dotted > 0:
          bit_mask += “1”
       else:
          bit_mask += “0”

   hashed_vectors.append(bit_mask)

Caveman Lawyer Nearest Neighbors

Insert:

Dumb list



Query
Caveman Lawyer Nearest Neighbors

Query Hashed       : 11001111
Index Vector Hashed: 11000100

Same side of projection 5 / 8 times 
Hamming similarity 0.625



Times many many more

   query_bit_mask = /*same as last slide*/

   for hashed in projections:
       
       # Saves some operations by just counting 
OPPOSITE, lower here is more similar
       xord = hashed ^ query_bitmask
       num_bits_set = popcount(xord)
       
       if num_bits_set < min_so_far:
          … append to top N…
          min_so_far = num_bits_set 
   

Caveman Lawyer Nearest Neighbors

Query:



Results

From: https://softwaredoug.com/blog/2023/08/21/implementing-random-projections 

❌ High recall
❌ Low latency

“Benchmark”
HNSW / graph
 regime

https://softwaredoug.com/blog/2023/08/21/implementing-random-projections


Results

From: https://softwaredoug.com/blog/2023/08/21/implementing-random-projections 

❌ High recall
❌ Low latency

“Benchmark”
HNSW / graph
 regime

✅ Easy to update 
(append!)
✅ Very little RAM
✅ Dumb as 💩 to 
merge / shard

IRL 
Caveman 
engineer 
concerns

https://softwaredoug.com/blog/2023/08/21/implementing-random-projections
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Pre-compute the teeniest structures 
(ie graphs)

Highly Nonparametric
Assume nothing about vector space
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✅ High recall
✅ Low latency

❌ Easy to update 
(append!)
❌ RAM
❌ Disk
❌ Dumb as 💩 to 
merge / shard

Global structure to maintain,
update, merge…

Little global structure to maintain, 
update, merge..



Partitioning



Highly Parametric
Pre-compute the teeniest structures 
(ie graphs)

Highly Nonparametric
Assume nothing about vector space

✅ High recall
✅ Low latency

❌ Easy to update 
(append!)
? Very little RAM
❌ Dumb as 💩 to 
merge / shard

Most try to mitigate HNSW / graphs

Make them easier to update, etc



Highly Nonparametric
Assume nothing about vector space

❌ High recall
❌ Low latency

✅ Easy to update 
(append!)
? Very little RAM
✅ Dumb as 💩 to 
merge / shard

Little global structure to maintain, 
update, merge..

What about the other way?

Improve speed & recall 
but preserve 
operational dumb 
caveman concerns



Why can’t we just…

A
B

Img from 
https://stackoverflow.com/questions/69172349/r-project-plot-a-3d-mesh-grid-using-plot3d-package

Like assign “subcubes” or 
somesuch that A and B share?

Index
(1, 2, 0) -> A, B
(0, 1, 3) -> C, D



KD Trees

root

y<=c

c

y>c



KD Trees
y<=c

c

y>c

d

x<=d x>d



KD Trees
y<=c

c

y>c

d

x<=d x>d

e

x<=e x> e



KD Trees break down…

c

de

Too many dimensions to “split”

There’s a lower kind-of intrinsic 
dimensionality we can capture

Re-orient to vector space



Random Projection Trees

r r.v <= s

r.v > s



Radial Projection on unit sphere
r r.v <= s

r.v > s

r
90° - s

s = 0 -> 90 degrees from r

r.v > s

r.v <= s



As a tree…

r
90° - s

r.v > s

r.v <= s
r.v <= s r.v > s



Nested – left hand side shown

r.v <= s r.v <= s r.v > s

r.v <= s

r.v > s



Represent tree path as binary hash
--------------------------------
             king: 00100
            kings: 01110
           prince: 00110
            queen: 01110
             King: 01110
           throne: 01000
          kingdom: 00110
             lord: 00110
            royal: 01110
            reign: 01000
--------------------------------
         Fernvale: 00100
              IBG: 01010
     ReachedSorry: 10100
           MapsUV: 11110
ScoresAndOdds.com: 10010
             BRSC: 11000
      Lifestreams: 01010
      IMMOLATION1: 10100
            Purga: 01100
     Miniaturezed: 01000

r.v <= s
0

r.v > s
1

r.v <= s
0



First split… Pretty good!

             king: 00100
            kings: 01110
           prince: 00110
            queen: 01110
             King: 01110
           throne: 01000
          kingdom: 00110
             lord: 00110
            royal: 01110
            reign: 01000

python benchmark/glove.py --algorithm rp_tree --workers 1 --verbose --seed 0   

👍 - all same side
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First split… Pretty good!

             king: 00100
            kings: 01110
           prince: 00110
            queen: 01110
             King: 01110
           throne: 01000
          kingdom: 00110
             lord: 00110
            royal: 01110
            reign: 01000

python benchmark/glove.py --algorithm rp_tree --workers 1 --verbose --seed 0   

🤔- some neighbors sliced 
off…



OK, we expect this

python benchmark/glove.py --algorithm rp_tree --workers 1 --verbose --seed 0   

r
90° - s

Unlucky 
😢

r.v <= s



… But how often?

Source code:
https://github.com/softwaredoug/np-sims/blob/7e9b95580f36bbc4c57545e66c27d5802041949e/test/test_partition.py#L128

   vectors = np.load("test/glove_sample.npy")
   vector_idx = 774 # idx being searched 774 king

   for seed in range(0, 400):

        np.random.seed(seed)
        splitter = rptree_proj_maxvar_chooserule(vectors)

        left, right = splitter.split(vectors)
        assert len(left) != 0
        assert len(right) != 0

        if nn_on_correct_side(vectors, vector_idx, left, right):
            pass_count += 1
            print("✅")
        else:
            failed_seeds.add(seed)
            print("❌")

        runs += 1

Neighbors stay together:

Random Point:   ~60% of time
Outlier (king): ~80% of the time

300D Glove embeddings,
“king”, its neighbors, and 1000 random points

Maybe slight improvements:
Choosing projection with 
most variance?



Curse of Dimensionality

r

king

queen

300 Dimensional Sphere

👍So far, so good!
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Curse of Dimensionality

r

king

queen

300 Dimensional Sphere

👎But  wait… WTF 😠
King

Prince

cheese

computer



Like how does this happen



Curse of Dimensionality

r

king

queen

This is just 1 of 300 
dimensions

👎But  wait… WTF 😠
King

Prince

cheese

computer
3D 
representations 
often trick us



Shared dot product tells us so Little

https://softwaredoug.com/blog/2023/03/02/shared-dot-product 

0 … 298 299

king r.king ? … ?

queen r.queen ? … ?

299 ways it can be different!

https://softwaredoug.com/blog/2023/03/02/shared-dot-product


More Concretely

https://softwaredoug.com/blog/2023/03/02/shared-dot-product 

lat long altitude …

You 41.87 87.63 100 m ?

Bob 41.87 87.62  95 m ?

Neighbors, right?

https://softwaredoug.com/blog/2023/03/02/shared-dot-product


More Concretely

https://softwaredoug.com/blog/2023/03/02/shared-dot-product 

lat long altitude age Birthplace

You 41.87 87.63 100 m 5 Chicago

Bob 41.87 87.62  95 m 95 Ukraine

Actually dramatically different 
just with these 2 dimensions

https://softwaredoug.com/blog/2023/03/02/shared-dot-product


Split efficiency
Can improve split efficiency by 
choosing PCAs

Splits up fewer neighbors
Splits up 
many 
neighbors



Many projections -> forest



K-nearest Neighbor Search by Random Projection Forests - https://arxiv.org/pdf/1812.11689.pdf 
Yan, Wang, Wang, Wang, Li

We can create an RP forest

https://arxiv.org/pdf/1812.11689.pdf


https://arxiv.org/pdf/1812.11689.pdf

K-nearest Neighbor Search by Random Projection Forests - https://arxiv.org/pdf/1812.11689.pdf 
Yan, Wang, Wang, Wang, Li

One Tree

https://arxiv.org/pdf/1812.11689.pdf


ANNOY - https://github.com/spotify/annoy 
Graph from - http://ann-benchmarks.com 30-Aug-2023

Annoy

Severe delta 
in perf for 
same recall

https://github.com/spotify/annoy
http://ann-benchmarks.com


ANNOY - https://github.com/spotify/annoy 
Graph from - http://ann-benchmarks.com 30-Aug-2023

HNSW (Faiss)

Holds a bit 
more steady

(also 
generally 
faster)

https://github.com/spotify/annoy
http://ann-benchmarks.com


Build times

Annoy
~8-30 
mins

HNSW 
(Faiss)
~60-100 
mins



Build times

Annoy
~8-30 
mins

HNSW 
(Faiss)
~60-100 
mins

Update times & 
stability vs 

recall?



Highly Parametric
Pre-compute the teeniest structures 
(ie graphs)

Highly Nonparametric
Assume nothing about vector space

Trade-offs!

● 😭 - Prone to increasing curse 
of dimensionality problems as 
dims increase…

😁 … but dumb caveman lawyer 
like me can maintain

● 😁 - Fixes curse of 
dimensionality...

😭...by precomputing answer 
and being harder to update



Highly Parametric
Pre-compute the teeniest structures 
(ie graphs)

Highly Nonparametric
Assume nothing about vector space

 High recall
 Low latency

✅ Easy to update 
(append!)
? Very little RAM
✅ Dumb as 💩 to 
merge / shard

🚀 High recall
🚀 Low latency

❌ Easy to update 
(append!)
❌ RAM
❌ Disk
❌ Dumb as 💩 to 
merge / shard

More dimensions… more problems…

�
��
�



Highly Parametric
Pre-compute the teeniest structures 
(ie graphs)

Highly Nonparametric
Assume nothing about vector space

Coarse-grain 
retrieval

(ie top 1000) to 
rerank

Choose right tool for job

Fine-grain retrieval 

(ie top 10) to 
directly show user



Highly Parametric
Pre-compute the teeniest structures 
(ie graphs)

Highly Nonparametric
Assume nothing about vector space

Coarse-grain retrieval

Tune for performance
(fewer connections, 
gather few candidates)

Choose right HNSW params

Fine-grain retrieval 

Tuned to high-recall
(more connections, 
gather more 
candidates)

https://www.elastic.co/guide/en/elasticsearch/reference/current/tune-knn-search.html 

https://www.elastic.co/guide/en/elasticsearch/reference/current/tune-knn-search.html


Highly Parametric / Fine Grain
Pre-compute the teeniest structures 
(ie graphs)

Highly Nonparametric / Coarse Grain
Assume nothing about vector space

Coarse-grain 
retrieval (ie top 
1000) to rerank w/ 
other factors?

Which use-case?

Fine-grain retrieval 
(ie top 10) to 
directly show user

Recos?
Search?

RAG?



Conclusion - who is right? 

Leibniz Newton

Relational space: space only 
has meaning in its relation to 
other objects

(ie graphs, HNSW, etc)

Absolute space: the “x,y,z” 
coordinates we’re used to

(ie space partitioning)



Other thought provoking talks

TDD Where Did It All Go Wrong (Ian Cooper)
https://www.youtube.com/watch?v=EZ05e7EMOLM
(what TDD actually means, and how we’re doing it 
wrong)

Learning Learning to Rank (Sophie Watson)
https://www.youtube.com/watch?v=7teudGhdnqo 
(Just a nice overview of LTR from ML Point of View)

The Only Unbreakable Law (Casey Muratori)
https://www.youtube.com/watch?v=5IUj1EZwpJY 
(What Conway’s Law actually says - how Conway’s law 
transcends time & space on software projects)

(Not nesc. related to vectors)

https://www.youtube.com/watch?v=EZ05e7EMOLM
https://www.youtube.com/watch?v=7teudGhdnqo
https://www.youtube.com/watch?v=5IUj1EZwpJY

