
© Doug Turnbull (http://softwaredoug.com), all opinions my own, not my employer

Vector Search: The Hard way

A series of educational mistakes

Chicago Search Meetup
Sept, 2023

http://softwaredoug.com

Obligatory Bio Slide
 Hi I’m Doug
(@softwaredoug everywhere)

Long-time search enthusiast... Not
yet (never?) an expert

I wrote some search books, did some open
source

I work at Reddit

I worked at Shopify & OpenSource Connections
in search

I blog here: http://softwaredoug.com :itme:

http://softwaredoug.com

The Problem

My Strawman(?)

https://ann-benchmarks.com/

Build
Time

Search
Time

(Searching static index)

https://ann-benchmarks.com/

Real Life systems…

Vector DB

Updates are constant

Vector DB

Constant
updates

Searches are constant

Vector DB

Constant
updates

Searches

Limited memory

Vector DB

Constant
updates

Searches

(Only so much RAM)

Sharded

Vector DB
Shard 1

Constant
updates

Searches

(Only so much RAM)

Vector DB
Shard 2

Sharded

Vector DB
Shard 1

Constant
updates

Searches

(Only so much RAM)

Vector DB
Shard 2

Merge
results

...

Real life constraints

● High recall
● Low latency

Current Vector DB systems

Real life constraints

● High recall
● Low latency

Current Vector DB systems

● Updates need to happen constantly
○ Index not built up-front

● RAM can’t be absorbed by millions of
floating point values

● We need to shard, merge indices etc

Real Life

“Benchmark” regime

IRL

Start at the end

What results from just these incentives?

https://ann-benchmarks.com/

Build
Time

Search
Time

(Searching static index)

https://ann-benchmarks.com/

… you precompute the right answer

Me

Tom SueEd

… you create a ‘hub’ for that area

Me

Tom SueEd

HUB
dist=

0.01

Vector: x=0.10,y=0.12,z=0.59

0.
03

0.03

0.
02

0.04

0.005

0.09

… you create a way to get there fast

Me

Tom SueEd

HUB
dist=

0.01

Vector: x=0.10,y=0.12,z=0.59

0.
03

0.03

0.
02

0.04

0.005

0.09

Skiplist Skiplist

Skiplist

… you create a way to get there fast

Me

Tom SueEd

HUB
dist=

0.01

Vector: x=0.10,y=0.12,z=0.59

0.
03

0.03

0.
02

0.04

0.005

0.09

Skiplist Skiplist

Skiplist You have
Hierarchical
Navigable
Small
Worlds

“Graph” regime of today

Me

Tom SueEd

HUB
dist=

0.01

Vector: x=0.10,y=0.12,z=0.59

0.
03

0.03

0.
02

0.04

0.005

0.09

Skiplist Skiplist

Skiplist ✅ High recall
✅ Low latency

Current Vector DB systems

“Benchmark”
 regime

“Zip code” metaphor

Me

Tom SueEd

Post
Office

dist=
0.01

Vector: x=0.10,y=0.12,z=0.59

0.
03

0.03

0.
02

0.04

0.005

0.09

Regional Regional

Nat’l Distribution ✅ High recall
✅ Low latency

Current Vector DB systems

“Benchmark”
 regime

“Graph” regime

Me

Tom SueEd

HUB
dist=

0.01

Vector: x=0.10,y=0.12,z=0.59

0.
03

0.03

0.
02

0.04

0.005

0.09

Skiplist Skiplist

Skiplist ✅ High recall
✅ Low latency

Current Vector DB systems

“Benchmark”
 regime

● ❌ Easy to update
● ❌ Memory
● ❌ Persist / load from disk
● ❌ Shard, merge indices etc

Real Life

“Graph” regime

Me

Tom SueEd

HUB
dist=

0.01

Vector: x=0.10,y=0.12,z=0.59

0.
03

0.03

0.
02

0.04

0.005

0.09

Skiplist Skiplist

Skiplist ✅ High recall
✅ Low latency

Current Vector DB systems

“Benchmark”
 regime

● ❌ Easy to update
● ❌ Memory
● 🤔 Persist / load from disk
● ❌ Shard, merge indices etc

Real Life

SCANN and friends actually help

Are we really solving this first principles?

✅ High recall
✅ Low latency

Current Vector DB systems

“Benchmark”
HNSW / graph
 regime

● ❌ Easy to update
● ❌ Memory
● ❌ Disk
● ❌ Shard, merge indices etc

Real Life

We are here
(local maximum)

Lipstick on a pig?

✅ High recall
✅ Low latency

Current Vector DB systems

“Benchmark”
HNSW / graph
 regime

● ❌ Easy to update
● ❌ Memory
● ❌ Disk
● ❌ Shard, merge indices etc

Real Life
● ❌Recover cosine similarity
● ❌Integration with traditional

search
● ❌Beyond just “recall” over top N
● ...?

Other requirements

Hashing

I’m just a caveman

Dumb hashes
Random hyperplane

Dot prod > 0

Dot Prod <= 0

projection =
np.random.normal(size=dims)
projection =
np.linalg.norm(projection)

Times many many more

 bit_mask = “”
 for proj in projections:
 dotted = np.dot(proj, new_vector)

 if dotted > 0:
 bit_mask += “1”
 else:
 bit_mask += “0”

 hashed_vectors.append(bit_mask)

Caveman Lawyer Nearest Neighbors

Insert:

Dumb list

Query
Caveman Lawyer Nearest Neighbors

Query Hashed : 11001111
Index Vector Hashed: 11000100

Same side of projection 5 / 8 times
Hamming similarity 0.625

Times many many more

 query_bit_mask = /*same as last slide*/

 for hashed in projections:

 # Saves some operations by just counting
OPPOSITE, lower here is more similar
 xord = hashed ^ query_bitmask
 num_bits_set = popcount(xord)

 if num_bits_set < min_so_far:
 … append to top N…
 min_so_far = num_bits_set

Caveman Lawyer Nearest Neighbors

Query:

Results

From: https://softwaredoug.com/blog/2023/08/21/implementing-random-projections

❌ High recall
❌ Low latency

“Benchmark”
HNSW / graph
 regime

https://softwaredoug.com/blog/2023/08/21/implementing-random-projections

Results

From: https://softwaredoug.com/blog/2023/08/21/implementing-random-projections

❌ High recall
❌ Low latency

“Benchmark”
HNSW / graph
 regime

✅ Easy to update
(append!)
✅ Very little RAM
✅ Dumb as 💩 to
merge / shard

IRL
Caveman
engineer
concerns

https://softwaredoug.com/blog/2023/08/21/implementing-random-projections

Highly Parametric
Pre-compute the teeniest structures
(ie graphs)

Highly Nonparametric
Assume nothing about vector space

❌ High recall
❌ Low latency

✅ Easy to update
(append!)
? Very little RAM
✅ Dumb as 💩 to
merge / shard

✅ High recall
✅ Low latency

❌ Easy to update
(append!)
❌ RAM
❌ Disk
❌ Dumb as 💩 to
merge / shard

Highly Parametric
Pre-compute the teeniest structures
(ie graphs)

Highly Nonparametric
Assume nothing about vector space

❌ High recall
❌ Low latency

✅ Easy to update
(append!)
? Very little RAM
✅ Dumb as 💩 to
merge / shard

✅ High recall
✅ Low latency

❌ Easy to update
(append!)
❌ RAM
❌ Disk
❌ Dumb as 💩 to
merge / shard

Global structure to maintain,
update, merge…

Little global structure to maintain,
update, merge..

Partitioning

Highly Parametric
Pre-compute the teeniest structures
(ie graphs)

Highly Nonparametric
Assume nothing about vector space

✅ High recall
✅ Low latency

❌ Easy to update
(append!)
? Very little RAM
❌ Dumb as 💩 to
merge / shard

Most try to mitigate HNSW / graphs

Make them easier to update, etc

Highly Nonparametric
Assume nothing about vector space

❌ High recall
❌ Low latency

✅ Easy to update
(append!)
? Very little RAM
✅ Dumb as 💩 to
merge / shard

Little global structure to maintain,
update, merge..

What about the other way?

Improve speed & recall
but preserve
operational dumb
caveman concerns

Why can’t we just…

A
B

Img from
https://stackoverflow.com/questions/69172349/r-project-plot-a-3d-mesh-grid-using-plot3d-package

Like assign “subcubes” or
somesuch that A and B share?

Index
(1, 2, 0) -> A, B
(0, 1, 3) -> C, D

KD Trees

root

y<=c

c

y>c

KD Trees
y<=c

c

y>c

d

x<=d x>d

KD Trees
y<=c

c

y>c

d

x<=d x>d

e

x<=e x> e

KD Trees break down…

c

de

Too many dimensions to “split”

There’s a lower kind-of intrinsic
dimensionality we can capture

Re-orient to vector space

Random Projection Trees

r r.v <= s

r.v > s

Radial Projection on unit sphere
r r.v <= s

r.v > s

r
90° - s

s = 0 -> 90 degrees from r

r.v > s

r.v <= s

As a tree…

r
90° - s

r.v > s

r.v <= s
r.v <= s r.v > s

Nested – left hand side shown

r.v <= s r.v <= s r.v > s

r.v <= s

r.v > s

Represent tree path as binary hash

 king: 00100
 kings: 01110
 prince: 00110
 queen: 01110
 King: 01110
 throne: 01000
 kingdom: 00110
 lord: 00110
 royal: 01110
 reign: 01000

 Fernvale: 00100
 IBG: 01010
 ReachedSorry: 10100
 MapsUV: 11110
ScoresAndOdds.com: 10010
 BRSC: 11000
 Lifestreams: 01010
 IMMOLATION1: 10100
 Purga: 01100
 Miniaturezed: 01000

r.v <= s
0

r.v > s
1

r.v <= s
0

First split… Pretty good!

 king: 00100
 kings: 01110
 prince: 00110
 queen: 01110
 King: 01110
 throne: 01000
 kingdom: 00110
 lord: 00110
 royal: 01110
 reign: 01000

python benchmark/glove.py --algorithm rp_tree --workers 1 --verbose --seed 0

👍 - all same side

First split… Pretty good!

 king: 00100
 kings: 01110
 prince: 00110
 queen: 01110
 King: 01110
 throne: 01000
 kingdom: 00110
 lord: 00110
 royal: 01110
 reign: 01000

python benchmark/glove.py --algorithm rp_tree --workers 1 --verbose --seed 0

🤔- some neighbors sliced
off…

First split… Pretty good!

 king: 00100
 kings: 01110
 prince: 00110
 queen: 01110
 King: 01110
 throne: 01000
 kingdom: 00110
 lord: 00110
 royal: 01110
 reign: 01000

python benchmark/glove.py --algorithm rp_tree --workers 1 --verbose --seed 0

🤔- some neighbors sliced
off…

OK, we expect this

python benchmark/glove.py --algorithm rp_tree --workers 1 --verbose --seed 0

r
90° - s

Unlucky
😢

r.v <= s

… But how often?

Source code:
https://github.com/softwaredoug/np-sims/blob/7e9b95580f36bbc4c57545e66c27d5802041949e/test/test_partition.py#L128

 vectors = np.load("test/glove_sample.npy")
 vector_idx = 774 # idx being searched 774 king

 for seed in range(0, 400):

 np.random.seed(seed)
 splitter = rptree_proj_maxvar_chooserule(vectors)

 left, right = splitter.split(vectors)
 assert len(left) != 0
 assert len(right) != 0

 if nn_on_correct_side(vectors, vector_idx, left, right):
 pass_count += 1
 print("✅")
 else:
 failed_seeds.add(seed)
 print("❌")

 runs += 1

Neighbors stay together:

Random Point: ~60% of time
Outlier (king): ~80% of the time

300D Glove embeddings,
“king”, its neighbors, and 1000 random points

Maybe slight improvements:
Choosing projection with
most variance?

Curse of Dimensionality

r

king

queen

300 Dimensional Sphere

👍So far, so good!

Curse of Dimensionality

r

king

queen

300 Dimensional Sphere

👎But wait… WTF 😠
King

Prince

Curse of Dimensionality

r

king

queen

300 Dimensional Sphere

👎But wait… WTF 😠
King

Prince

cheese

computer

Like how does this happen

Curse of Dimensionality

r

king

queen

This is just 1 of 300
dimensions

👎But wait… WTF 😠
King

Prince

cheese

computer
3D
representations
often trick us

Shared dot product tells us so Little

https://softwaredoug.com/blog/2023/03/02/shared-dot-product

0 … 298 299

king r.king ? … ?

queen r.queen ? … ?

299 ways it can be different!

https://softwaredoug.com/blog/2023/03/02/shared-dot-product

More Concretely

https://softwaredoug.com/blog/2023/03/02/shared-dot-product

lat long altitude …

You 41.87 87.63 100 m ?

Bob 41.87 87.62 95 m ?

Neighbors, right?

https://softwaredoug.com/blog/2023/03/02/shared-dot-product

More Concretely

https://softwaredoug.com/blog/2023/03/02/shared-dot-product

lat long altitude age Birthplace

You 41.87 87.63 100 m 5 Chicago

Bob 41.87 87.62 95 m 95 Ukraine

Actually dramatically different
just with these 2 dimensions

https://softwaredoug.com/blog/2023/03/02/shared-dot-product

Split efficiency
Can improve split efficiency by
choosing PCAs

Splits up fewer neighbors
Splits up
many
neighbors

Many projections -> forest

K-nearest Neighbor Search by Random Projection Forests - https://arxiv.org/pdf/1812.11689.pdf
Yan, Wang, Wang, Wang, Li

We can create an RP forest

https://arxiv.org/pdf/1812.11689.pdf

https://arxiv.org/pdf/1812.11689.pdf

K-nearest Neighbor Search by Random Projection Forests - https://arxiv.org/pdf/1812.11689.pdf
Yan, Wang, Wang, Wang, Li

One Tree

https://arxiv.org/pdf/1812.11689.pdf

ANNOY - https://github.com/spotify/annoy
Graph from - http://ann-benchmarks.com 30-Aug-2023

Annoy

Severe delta
in perf for
same recall

https://github.com/spotify/annoy
http://ann-benchmarks.com

ANNOY - https://github.com/spotify/annoy
Graph from - http://ann-benchmarks.com 30-Aug-2023

HNSW (Faiss)

Holds a bit
more steady

(also
generally
faster)

https://github.com/spotify/annoy
http://ann-benchmarks.com

Build times

Annoy
~8-30
mins

HNSW
(Faiss)
~60-100
mins

Build times

Annoy
~8-30
mins

HNSW
(Faiss)
~60-100
mins

Update times &
stability vs

recall?

Highly Parametric
Pre-compute the teeniest structures
(ie graphs)

Highly Nonparametric
Assume nothing about vector space

Trade-offs!

● 😭 - Prone to increasing curse
of dimensionality problems as
dims increase…

😁 … but dumb caveman lawyer
like me can maintain

● 😁 - Fixes curse of
dimensionality...

😭...by precomputing answer
and being harder to update

Highly Parametric
Pre-compute the teeniest structures
(ie graphs)

Highly Nonparametric
Assume nothing about vector space

 High recall
 Low latency

✅ Easy to update
(append!)
? Very little RAM
✅ Dumb as 💩 to
merge / shard

🚀 High recall
🚀 Low latency

❌ Easy to update
(append!)
❌ RAM
❌ Disk
❌ Dumb as 💩 to
merge / shard

More dimensions… more problems…

�
��
�

Highly Parametric
Pre-compute the teeniest structures
(ie graphs)

Highly Nonparametric
Assume nothing about vector space

Coarse-grain
retrieval

(ie top 1000) to
rerank

Choose right tool for job

Fine-grain retrieval

(ie top 10) to
directly show user

Highly Parametric
Pre-compute the teeniest structures
(ie graphs)

Highly Nonparametric
Assume nothing about vector space

Coarse-grain retrieval

Tune for performance
(fewer connections,
gather few candidates)

Choose right HNSW params

Fine-grain retrieval

Tuned to high-recall
(more connections,
gather more
candidates)

https://www.elastic.co/guide/en/elasticsearch/reference/current/tune-knn-search.html

https://www.elastic.co/guide/en/elasticsearch/reference/current/tune-knn-search.html

Highly Parametric / Fine Grain
Pre-compute the teeniest structures
(ie graphs)

Highly Nonparametric / Coarse Grain
Assume nothing about vector space

Coarse-grain
retrieval (ie top
1000) to rerank w/
other factors?

Which use-case?

Fine-grain retrieval
(ie top 10) to
directly show user

Recos?
Search?

RAG?

Conclusion - who is right?

Leibniz Newton

Relational space: space only
has meaning in its relation to
other objects

(ie graphs, HNSW, etc)

Absolute space: the “x,y,z”
coordinates we’re used to

(ie space partitioning)

Other thought provoking talks

TDD Where Did It All Go Wrong (Ian Cooper)
https://www.youtube.com/watch?v=EZ05e7EMOLM
(what TDD actually means, and how we’re doing it
wrong)

Learning Learning to Rank (Sophie Watson)
https://www.youtube.com/watch?v=7teudGhdnqo
(Just a nice overview of LTR from ML Point of View)

The Only Unbreakable Law (Casey Muratori)
https://www.youtube.com/watch?v=5IUj1EZwpJY
(What Conway’s Law actually says - how Conway’s law
transcends time & space on software projects)

(Not nesc. related to vectors)

https://www.youtube.com/watch?v=EZ05e7EMOLM
https://www.youtube.com/watch?v=7teudGhdnqo
https://www.youtube.com/watch?v=5IUj1EZwpJY

