VECTOR SEARCH: THE HARD WAY

Chicago Search Meetup Sept, 2023

A series of educational mistakes

© Doug Turnbull (<u>http://softwaredoug.com</u>), all opinions my own, not my employer

Obligatory Bio Slide

Hi I'm Doug (@softwaredoug everywhere)

Long-time search enthusiast... Not yet (never?) an expert

I wrote some search books, did some open source

I work at Reddit

I worked at Shopify & OpenSource Connections in search

I blog here: http://softwaredoug.com

THE PROBLEM

My Strawman(?)

(Searching static index)

https://ann-benchmarks.com/

Real Life systems...

Updates are constant

Searches are constant

Limited memory

Real life constraints

Current Vector DB systems

- High recall
- Low latency

Real life constraints

Current Vector DB systems

- High recall
- Low latency

"Benchmark" regime

<u>Real Life</u>

- Updates need to happen constantly
 - Index not built up-front
- RAM can't be absorbed by millions of floating point values
- We need to shard, merge indices etc

IRL

START AT THE END

What results from just these incentives?

(Searching static index)

... you precompute the right answer

... you create a 'hub' for that area

... you create a way to get there fast

... you create a way to get there fast

"Graph" regime of today

Current Vector DB systems

High recall Low latency

"Benchmark" regime

"Zip code" metaphor

Current Vector DB systems

High recall "Benchmark" Low latency regime

<u>Current Vector DB systems</u> ✓ High recall ✓ Low latency Genchmark" regime

<u>Real Life</u>

- 🛛 🗙 Easy to update
 - X Memory
- X Persist / load from disk
- 🗙 Shard, merge indices etc

Are we really solving this first principles?

Current Vector DB systems

"Benchmark" HNSW / graph regime

<u>Real Life</u>

- 🗙 Easy to update
 - X Memory
 - 🗙 Disk
 - X Shard, merge indices etc

Lipstick on a pig?

Other requirements

- XRecover cosine similarity
- XIntegration with traditional search
- XBeyond just "recall" over top N
- ...?

<u>Current Vector DB systems</u> ✓ High recall ✓ Low latency

"Benchmark" HNSW / graph regime

<u>Real Life</u>

- X Easy to update
 - 🗙 Memory
 - 🗙 Disk
- 🗙 Shard, merge indices etc

HASHING

I'm just a caveman

Dumb hashes

Times many many more

Caveman Lawyer Nearest Neighbors

<u>Insert:</u>

```
bit_mask = ""
for proj in projections:
    dotted = np.dot(proj, new_vector)
    if dotted > 0:
        bit_mask += "1"
    else:
        bit_mask += "0"
```

hashed_vectors.append(bit_mask)

Caveman Lawyer Nearest Neighbors

Times many many more

Caveman Lawyer Nearest Neighbors

Query:

query_bit_mask = /*same as last slide*/

for hashed in projections:

Saves some operations by just counting
OPPOSITE, lower here is more similar
 xord = hashed ^ query_bitmask
 num_bits_set = popcount(xord)

if num_bits_set < min_so_far: ... append to top N... min_so_far = num_bits_set

Results

K High recall _ "Benchmark"
K Low latency _ regime

Results

<u>Highly Parametric</u> Pre-compute the teeniest structures (ie graphs) <u>Highly Nonparametric</u> Assume nothing about vector space

K High recall Low latency

 Easy to update (append!)
 Very little RAM
 Dumb as a to merge / shard <u>Highly Parametric</u> Pre-compute the teeniest structures (ie graphs) <u>Highly Nonparametric</u> Assume nothing about vector space

✔ High recall✔ Low latency

X Easy to update
(append!)
X RAM
Disk
Dumb as to
merge / shard

Global structure to maintain, update, merge...

K High recall Low latency

Easy to update
(append!)
? Very little RAM
Dumb as & to
merge / shard

Little global structure to maintain, update, merge..

PARTITIONING

Most try to mitigate HNSW / graphs

<u>Highly Parametric</u>

Pre-compute the teeniest structures
(ie graphs)

<u>Highly Nonparametric</u>

Assume nothing about vector space

X Easy to update
(append!)
? Very little RAM
X Dumb as a to
merge / shard

Make them easier to update, etc
What about the other way?

<u>Highly Nonparametric</u>

Assume nothing about vector space

Little global structure to maintain, update, merge..

Why can't we just...

Like assign "subcubes" or somesuch that A and B share?

Index (1, 2, 0) -> A, B (0, 1, 3) -> C, D

KD Trees

KD Trees

KD Trees break down...

Random Projection Trees

Radial Projection on unit sphere

As a tree...

r.v <= s

Nested – left hand side shown

Represent tree path as binary hash

king:	00100
kings:	01110
prince:	00110
queen:	01110
King:	01110
throne:	01000
kingdom:	00110
lord:	00110
royal:	01110
reign:	01000
Fernvale:	00100
IBG:	01010
ReachedSorry:	10100
MapsUV:	11110
<pre>ScoresAndOdds.com:</pre>	10010
BRSC:	11000
Lifestreams:	01010
IMMOLATION1:	10100
Purga:	01100
Miniaturezed:	01000

First split... Pretty good!

First split... Pretty good!

First split... Pretty good!

OK, we expect this

... But how often?

vectors = np.load("test/glove_sample.npy")
vector_idx = 774 # idx being searched 774 king

```
for seed in range(0, 400):
```

```
np.random.seed(seed)
splitter = rptree_proj_maxvar_chooserule(vectors)
```

```
left, right = splitter.split(vectors)
assert len(left) != 0
assert len(right) != 0
```

```
if nn_on_correct_side(vectors, vector_idx, left, right):
    pass_count += 1
    print("\[]")
else:
    failed_seeds.add(seed)
    print("\[]")
```

runs += 1

300D Glove embeddings, "king", its neighbors, and 1000 random points

Neighbors stay together:

Random Point: ~60% of time Outlier (king): ~80% of the time

> Maybe slight improvements: Choosing projection with most variance?

Curse of Dimensionality

300 Dimensional Sphere

300 Dimensional Sphere

300 Dimensional Sphere

Like how does this happen

Shared dot product tells us so Little

	0		298	299
king	r.king	?		?
queen	r.queen	?		?

299 ways it can be different!

https://softwaredoug.com/blog/2023/03/02/shared-dot-product

More Concretely

	lat	long	altitude		
You	41.87	87.63	100 m	?	
Bob	41.87	87.62	95 m	?	
Neighbors, right?					

https://softwaredoug.com/blog/2023/03/02/shared-dot-product

More Concretely

	lat	long	altitude	age	Birthplace
You	41.87	87.63	100 m	5	Chicago
Bob	41.87	87.62	95 m	95	Ukraine

https://softwaredoug.com/blog/2023/03/02/shared-dot-product

Actually dramatically different just with these **2** dimensions

Split efficiency

Can improve split efficiency by choosing PCAs

Many projections -> forest

We can create an RP forest

K-nearest Neighbor Search by Random Projection Forests - <u>https://arxiv.org/pdf/1812.11689.pdf</u> Yan, Wang, Wang, Wang, Li

https://arxiv.org/pdf/1812.11689.pdf

K-nearest Neighbor Search by Random Projection Forests - https://arxiv.org/pdf/1812.11689.pdf Yan, Wang, Wang, Wang, Li

ANNOY - <u>https://github.com/spotify/annoy</u> Graph from - <u>http://ann-benchmarks.com</u> 30-Aug-2023

ANNOY - <u>https://github.com/spotify/annoy</u> Graph from - <u>http://ann-benchmarks.com</u> 30-Aug-2023

Recall

Trade-offs!

<u>Highly Parametric</u>

Pre-compute the teeniest structures
(ie graphs)

- Fixes curse of dimensionality...
 - ☆...by precomputing answer and being harder to update

<u>Highly Nonparametric</u> Assume nothing about vector space

Prone to increasing curse of dimensionality problems as dims increase...

😁 … but dumb caveman lawyer like me can maintain

More dimensions... more problems...

<u>Highly Parametric</u>

Pre-compute the teeniest structures
(ie graphs)

High recallLow latency

<u>Highly Nonparametric</u> Assume nothing about vector space

> High recall Low latency

Easy to update
(append!)
Very little RAM
Dumb as to
merge / shard

Choose right tool for job

Highly Parametric

Pre-compute the teeniest structures
(ie graphs)

<u>Highly Nonparametric</u> Assume nothing about vector space

Fine-grain retrieval

(ie top 10) to directly show user Coarse-grain retrieval

(ie top 1000) to rerank

Choose right HNSW params

Highly Parametric

Pre-compute the teeniest structures
(ie graphs)

<u>Highly Nonparametric</u> Assume nothing about vector space

Fine-grain retrieval

Tuned to high-recall (more connections, gather more candidates)

Coarse-grain retrieval

Tune for performance (fewer connections, gather few candidates)
Which use-case?

Highly Parametric / Fine Grain

Pre-compute the teeniest structures (ie graphs)

Fine-grain retrieval (ie top 10) to directly show user

Inspired by your browsing history

Amazon Essentials Men's **Crewneck Fleece** Sweatshirt

Pocket T-Shirt \$10.00

Recos?

\$15.00

Amazon Essentials Men's Slim-Fit Long-Sleeve

What's the best gift to get a four year old?

Choosing a gift for a 4-year-old can be a delight curious, energetic, and eager to explore the wor on the child's interests, but here are some cated

1. Creative Arts and Crafts Supplies

. Drawing and Coloring Cate: Dravida tham with

RAG?

<u>Highly Nonparametric / Coarse Grain</u>

Assume nothing about vector space

Coarse-grain retrieval (ie top 1000) to rerank w/ other factors?

Search?

Conclusion - who is right?

Leibniz

Relational space: space only has meaning in its relation to other objects

(ie graphs, HNSW, etc)

Newton

Absolute space: the "x,y,z" coordinates we're used to

(ie space partitioning)

Other thought provoking talks

(Not nesc. related to vectors)

TDD Where Did It All Go Wrong (Ian Cooper) https://www.youtube.com/watch?v=EZ05e7EMOLM (what TDD actually means, and how we're doing it wrong)

Learning Learning to Rank (Sophie Watson) <u>https://www.youtube.com/watch?v=7teudGhdnqo</u> (Just a nice overview of LTR from ML Point of View)

The Only Unbreakable Law (Casey Muratori) <u>https://www.youtube.com/watch?v=5IUj1EZwpJY</u> (What Conway's Law actually says - how Conway's law transcends time & space on software projects)